CORE MATHEMATICS (C) UNIT 1 TEST PAPER 1

- 1. (i) Given that $2^a = 8^b$, express a in terms of b. [2]
 - (ii) State the value of x for which $9^x = 3$. [2]
- 2. Find, in the form y = mx + c, the equation of the straight line which passes through the points (-1, 5) and (2, -7).
- 3. (i) Find the discriminant of the quadratic function $f(x) = x^2 3kx + (k^2 + 5)$. [2]
 - (ii) Hence find the set of values of k for which the equation $x^2 3kx + (k^2 + 5) = 0$ has no real roots for x. [3]
- 4. (i) Find the prime numbers p and q such that $\sqrt{56} = 2\sqrt{p}\sqrt{q}$ where p < q. [3]
 - (ii) Express $\frac{2}{3-\sqrt{3}}$ in the form $a+b\sqrt{3}$, where a and b are rational numbers to be found. [4]
- 5. Find the values of x and y for which

$$2x + y = 7$$
 and $x^2 + 2y = 19$. [7]

- 6. The circle C has equation $x^2 + y^2 4x + 6y 3 = 0$.
 - (i) Find the coordinates of the centre of C. [3]
 - (ii) Find the radius of C. [2]
 - (iii) Given that that the point (p, 1) lies on C, find the value of p. [3]
- 7. (i) Sketch the graph of $y = -\frac{k}{r}$, where k is a positive constant. [2]
 - (ii) On the same diagram, sketch the graph of $y = a \frac{k}{x}$, where a is also a positive constant.
 - (iii) Find, in terms of a and k, the gradient of the graph of $y = a \frac{k}{x}$ at the point where it crosses the x-axis. [5]

CORE MATHEMATICS 1 (C) TEST PAPER 1 Page 2

8. A function f is defined, for x > 0, by

$$f(x) \equiv \frac{x}{2} - \frac{4}{x^2} + 1.$$

- (i) Find f'(x) and hence show that f(x) is an increasing function. [4]
- (ii) Find f''(x). [2]
- (iii) The normal at the point (2, 1) to the curve y = f(x) cuts the x and y axes at A and B respectively. Calculate the length of AB, giving your answer in surd form simplified as far as possible. [7]
- 9. A rectangular playground is bordered on one side by a straight wall with a gate in it. The other three sides are to be formed by a fence of total length 4k metres.

(i) If the two sides perpendicular to the wall are each of length x metres and the area of the playground is $A \, \text{m}^2$, show that

$$A = 2k^2 - 2(x - k)^2.$$
 [6]

- (ii) Deduce that the playground has its largest area when x = k. State its area in this case. [3]
- (iii) Show that a larger area is obtained if the playground is bounded by a semicircular fence, also of length 4k metres. [6]

CORE MATHS 1 (C) TEST PAPER 1 : ANSWERS AND MARK SCHEME

1. (i)
$$8^b = (2^3)^b = 2^{3b}$$
, so $a = 3b$

M1 A1

(ii)
$$9^{1/2} = 3$$
, so $x = \frac{1}{2}$

M1 A1

4

4

2. Gradient =
$$-4$$

$$y-5=-4(x+1)$$

$$y = -4x + 1$$

B1 M1 A1 A1

3. (i) Discriminant =
$$9k^2 - 4(k^2 + 5) = 5k^2 - 20$$

M1 A1

(ii)
$$5k^2 - 20 < 0$$

(ii)
$$5k^2 - 20 < 0$$
 $k^2 < 4$ $-2 < k < 2$

M1 A1 A1

5

4. (i)
$$\sqrt{56} = \sqrt{4 \times 2 \times 7} = 2\sqrt{2}\sqrt{7}$$
 $p = 2, q = 7$

$$p = 2, q = 7$$

M1 A1 A1

(ii)
$$\frac{2}{3-\sqrt{3}} = \frac{2(3+\sqrt{3})}{(3-\sqrt{3})(3+\sqrt{3})} = \frac{6+2\sqrt{3}}{6} = 1+\frac{1}{3}\sqrt{3}$$
 $a=1, b=\frac{1}{3}$

$$a = 1, b = \frac{1}{3}$$

M1 M1 A1 A1 7

5.
$$y = 7 - 2x$$
 $x^2 + 2(7 - 2x) = 19$

$$x^{2} + 2(7 - 2x) = 19$$
 $x^{2} - 4x - 5 = 0$

B1 M1 A1

$$(x+1)(x-5)=0$$

$$(x+1)(x-5) = 0$$
 $x = -1, y = 9$ or $x = 5, y = -3$

M1 M1 A1 A1 7

6. (i)
$$(x-2)^2 + (y+3)^2 = 16$$

Centre (2, -3)

M1 A1 A1

(ii) Radius =
$$\sqrt{16}$$
 = 4

M1 A1

(iii)
$$(p-2)^2 = 0$$

$$p=2$$

M1 A1 A1

8

(i) Graph in second and fourth quadrants with axes as asymptotes 7.

B2

(ii) Graph in (i) translated a units upwards

B₂

(iii)
$$dy/dx = k/x^2$$

When x = k/a, gradient = a^2/k

9 B2 M1 A1 A1

M1 A1 M1 A1

8. (i)
$$f'(x) = \frac{1}{2} + \frac{8}{x^3} > 0$$
 for $x > 0$, so $f(x)$ is increasing

(ii)
$$f''(x) = -\frac{24}{x^4}$$

M1 A1 M1 A1

(iii) At
$$(2, 1)$$
, gradient = $3/2$ so normal has gradient $-2/3$

Normal is
$$y - 1 = -2/3(x - 2)$$
, cutting axes at $(0, 7/3)$, $(7/2, 0)$

M1 A1 A1

$$AB^2 = 49/9 + 49/4 = 49(13/36)$$
 so $AB = 7\sqrt{13}/6$

M₁ A₁

13

9. (i) Length =
$$4k - 2x$$
, so area = $x(4k - 2x) = -2(x^2 - 2kx) = -2((x - k)^2 - k^2)$ B1 M1 A1 M1
= $2k^2 - 2(x - k)^2$ A1 A1

(ii) This is largest when
$$2(x-k)^2 = 0$$
, i.e. when $x = k$ Then area = $2k^2$

(iii) Semicircular arc of length 4k has radius
$$4k/\pi$$
, so area = $\frac{1}{2}\pi (4k/\pi)^2$

M1 A1 A1 B1 M1 A1

=
$$(8/\pi)k^2$$
. Now $2\pi \approx 6.2 < 8$, so $8/\pi > 2$, hence area is larger

M1 A1 A1

15